設(shè)a>b,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求數(shù)學(xué)公式最小值.

解:(1)∵a>b,b>0,且a+b=2.

所以,ab的最大值為1;
(2)
==
當(dāng)且僅當(dāng),即時(shí)取“=”,
所以,最小值為9.
分析:(1)直接利用基本不等式求ab的最大值;
(2)把要求最小值的式子提取2,用a+b替換2,然后用多項(xiàng)式乘多項(xiàng)式展開(kāi),然后再利用基本不等式求最小值.
點(diǎn)評(píng):本題考查了利用基本不等式求最值,利用基本不等式求最值時(shí)一定要注意條件,即“一正、二定、三相等”,此題是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求
2
a
+
8
b
最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•保定一模)設(shè)a>0,b>0,且a+b=2,
1
a
+
1
b
的最小值為m,記滿足x2+y2≤3m的所有整點(diǎn)坐標(biāo)為(xi,yi)(i=1,2,3,…,n),則
n
i=1
|xiyi|
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
,
b
c
是任意的非零向量,且相互不共線,有下列命題:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不與
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命題的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省鶴崗一中高一(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)a>b,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案