分析 由①可推得f(x)=m(x-3m)(x+m+3)<0在x≥1時(shí)恒成立,建立關(guān)于m的不等式組可得m的范圍,然后由②可得:?x∈(-∞,-4),使(x-3m)(x+m+3)<0成立,只要使-4比3m,-m-3中較小的一個(gè)大即可,分類討論可得m的范圍,綜合可得答案.
解答 解:∵g(x)=2x-4,當(dāng)x≥2時(shí),g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-3m)(x+m+3)<0在x≥2時(shí)恒成立,
∴二次函數(shù)圖象開(kāi)口只能向下,且與x軸交點(diǎn)都在(2,0)的左側(cè),
即$\left\{\begin{array}{l}m<0\\-m-3<2\\ 3m<2\end{array}\right.$,解得-5<m<0;
又∵?x∈(-∞,-4),f(x)g(x)<0.
而此時(shí)有g(shù)(x)=2x-4<0.
∴?x∈(-∞,-4),使f(x)=m(x-3m)(x+m+3)>0成立,
由于m<0,∴?x∈(-∞,-4),使(x-3m)(x+m+3)<0成立,
故只要使-4比3m,-m-3中較小的一個(gè)大即可,
當(dāng)m∈(-$\frac{3}{4}$,0)時(shí),3m>-m-3,只要-4>-m-3,解得m>1與m∈(-$\frac{3}{4}$,0)的交集為空集;
當(dāng)m=-$\frac{3}{4}$時(shí),兩根為-2;-2>-4,不符合;
當(dāng)m∈(-5,-$\frac{3}{4}$)時(shí),3m<-m-3,∴只要-4>3m,解得m<-$\frac{4}{3}$,
綜上可得m的取值范圍是:(-5,-$\frac{4}{3}$).
點(diǎn)評(píng) 此題考查了一元二次不等式的解法,指數(shù)函數(shù)的單調(diào)性及特殊點(diǎn),利用了分類討論的思想,分類討論時(shí)要做到不重不漏,考慮問(wèn)題要全面,是中檔題也是易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-4)∪(4,+∞) | B. | (-∞,-4)∪(-2,0)∪(2,4) | C. | (-∞,-4)∪(-2,0) | D. | (-4,-2)∪(2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 49 | B. | 45 | C. | 69 | D. | 73 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com