10.若存在x0>1,使不等式(x0+1)ln  x0<a(x0-1)成立,則實(shí)數(shù)a的取值范圍是 ( 。
A.(-∞,2)B.(2,+∞)C.(1,+∞)D.(4,+∞)

分析 若存在x0>1,使不等式(x0+1)ln x0<a(x0-1)成立,則存在x0>1,使不等式a>$\frac{({x}_{0}+1{)lnx}_{0}}{{x}_{0}-1}$成立,令f(x)=$\frac{{({x}_{\;}+1)lnx}_{\;}}{{x}_{\;}-1}$=(1+$\frac{2}{x-1}$)lnx,x>1,求出函數(shù)的極限,可得數(shù)a的取值范圍.

解答 解:若存在x0>1,使不等式(x0+1)ln x0<a(x0-1)成立,
則存在x0>1,使不等式a>$\frac{({x}_{0}+1{)lnx}_{0}}{{x}_{0}-1}$成立,
令f(x)=$\frac{{({x}_{\;}+1)lnx}_{\;}}{{x}_{\;}-1}$=(1+$\frac{2}{x-1}$)lnx,x>1,
此時(shí)f(x)為增函數(shù),
由$\lim_{x→1}f(x)$=$\lim_{x→1}lnx$+$\lim_{x→1}\frac{2lnx}{x-1}$=$\lim_{x→1}\frac{2lnx}{x-1}$→2
故a>2,
即實(shí)數(shù)a的取值范圍是(2,+∞),

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)存在性問題,函數(shù)的單調(diào)性,極限運(yùn)算,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知邊長(zhǎng)為2的正方形ABCD與菱形ABEF所在平面互相垂直,M為BC中點(diǎn).
(Ⅰ)求證:EM∥平面ADF.
(Ⅱ)若∠ABE=60°,求四面體M-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,若a2+a6+a10=$\frac{π}{2}$,則tan(a3+a9)的值為( 。
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影,則|OB|等于( 。
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.比較a=0.860.75,b=0.860.85,c=1.30.86大小c>a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知△ABC的外接圓的圓心為O,AB=2,AC=3,BC=4,則$\overrightarrow{AO}$•$\overrightarrow{BC}$=( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某校為了解高一年級(jí)學(xué)生身高情況,按10%的比例對(duì)全校700名高一學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高頻數(shù)分布表如下:
表1:男生身高頻數(shù)分布表
身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
頻數(shù)25131352
表2:女生身高頻數(shù)分布表
身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
頻數(shù)1812531
則該校高一學(xué)生身高(單位:cm)在[165,180)的概率$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x3+ax2+bx+c,g(x)=3x2+2ax+b(a,b,c是常數(shù)),若f(x)在(0,1)上單調(diào)遞減,則下列結(jié)論中:①f(0)•f(1)≤0;②g(0)•g(1)≥0;③a2-3b有最小值.
正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-1}(x≥1)}\\{3x-2(x<1)}\end{array}\right.$,若對(duì)任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{3}$)+$\frac{1}{2}$>0恒成立,整數(shù)λ的最小值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案