設(shè)函數(shù)f(x)=kx3+3(k-1)x2+1在區(qū)間(0,4)上是減函數(shù),則的取值范圍 (   )                                              A. B. C. D.

 

【答案】

D

【解析】解:因?yàn)楹瘮?shù)f(x)=kx3+3(k-1)x2+1在區(qū)間(0,4)上是減函數(shù),故有其導(dǎo)函數(shù)在給定區(qū)間上恒大于等于零,即

解得

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三上學(xué)期五調(diào)考試數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.

(1)將函數(shù)y=f(x)圖象向右平移一個單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;

(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽第一中學(xué)2012屆高三第一次階段考試數(shù)學(xué)文科試題 題型:044

設(shè)函數(shù)f(x)a2x2(a0)g(x)blnx

(1)將函數(shù)yf(x)圖象向右平移一個單位即可得到函數(shù)yφ(x)的圖象,試寫出yφ(x)的解析式及值域;

(2)關(guān)于x的不等式(x1)2f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;

(3)對于函數(shù)f(x)g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)km,使得f(x)kxmg(x)kxm都成立,則稱直線ykxm為函數(shù)f(x)g(x)的“分界線”.設(shè)be,試探究f(x)g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年河南省長葛市第三實(shí)驗(yàn)中學(xué)高二下學(xué)期3月月考數(shù)學(xué)理卷A 題型:解答題

(本小題滿分14分)
已知函數(shù)f(x)=-kx,.
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,且對于任意確定實(shí)數(shù)k的取值范圍;[來源:學(xué)&科&網(wǎng)]
(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年河南省長葛市高二下學(xué)期3月月考數(shù)學(xué)理卷A 題型:解答題

(本小題滿分14分)

已知函數(shù)f(x)=-kx,.

(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;

(2)若k>0,且對于任意確定實(shí)數(shù)k的取值范圍;[來源:學(xué)&科&網(wǎng)]

(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(22)已知函數(shù)f(x)=-kx.

(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;

(2)若k>0,且對于任意確定實(shí)數(shù)k的取值范圍;

(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:。

查看答案和解析>>

同步練習(xí)冊答案