已知命題p:函數(shù)y=cx為減函數(shù);命題q:x2-
2
x+c>0對x∈R恒成立,如果¬q為真命題,p或q為真命題,求c的取值范圍.
分析:先求出命題p,q為真命題時的等價條件,然后利用條件¬q為真命題,p或q為真命題去判斷命題p,q的真假.
解答:解:由命題p知0<c<1
由命題q知,(
2
)2-4c<o,即c>
1
2

由?q為真命題,p或q為真命題.p真q假,則
0<c<1
c≤
1
2
0<c≤
1
2

可知,c的取值范圍為0<c≤
1
2
點評:本題考查復合命題的真假以及利用命題的真假求參數(shù)的取值范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=lgx2的定義域是R,命題q:函數(shù)y=(
13
)
x
的值域是正實數(shù)集,給出命題:①p或q;②p且q;③非p;④非q.其中真命題個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上單調(diào)遞增.q:關于x的不等式ax2-ax+1>0解集為R.若p∧q假,p∨q真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增,命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立,若P∨Q是真命題,P∧Q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=log 0.5(x2+2x+a)的值域為R,命題q:函數(shù)y=(x-a)2在(2,+∞)上是增函數(shù).若p或q為真命題,p且q為假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=lg(ax2-x+
a16
)定義域為R; 命題Q:函數(shù)y=(5-2a)x為增函數(shù);若“p∨q”為真命題,“p∧q:”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案