【題目】求函數(shù)y=loga(x﹣x2)(a>0,a≠1)的單調(diào)區(qū)間及值域.

【答案】解:函數(shù)y=loga(x﹣x2)(a>0,a≠1) ∴x﹣x2>0,解得:0<x<1,
所以函數(shù)y=loga(x﹣x2)的定義域是(0,1).
∴0<x﹣x2=﹣(x﹣ 2+ ,
所以,當0<a<1時,loga(x﹣x2)≥loga ,函數(shù)y=loga(x﹣x2)的值域為[loga ,+∞),
當a>1時,loga(x﹣x2)≤loga ,函數(shù)y=loga(x﹣x2)的值域為(﹣∞,loga ],
當0<a<1時,函數(shù)y=loga(x﹣x2)在(0, ]上是減函數(shù),在[ ,1)是增函數(shù).
當a>1時,函數(shù)y=loga(x﹣x2)在(0, ]上是增函數(shù),在[ ,1)是減函數(shù)
【解析】根據(jù)復合函數(shù)的單調(diào)性“同增異減”可得單調(diào)區(qū)間,利用對數(shù)函數(shù)的性質(zhì)和二次函數(shù)的性質(zhì)可得函數(shù)y的值域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一條光線從點A(﹣4,﹣2)射出,到直線y=x上的B點后被直線y=x反射到y(tǒng)軸上的C點,又被y軸反射,這時反射光線恰好過點D(﹣1,6).求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,點P( )在橢圓上.
(1)求橢圓的離心率;
(2)設A為橢圓的左頂點,O為坐標原點.若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是(
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))的一個極值為

(1)求實數(shù)的值;

(2)若函數(shù)在區(qū)間上的最大值為18,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下幾個結(jié)論中:①在△ABC中,有等式 ②在邊長為1的正△ABC中一定有 =
③若向量 =(﹣3,2), =(0,﹣1),則向量 在向量 方向上的投影是﹣2
④與向量 =(﹣3,4)同方向的單位向量是 =(﹣
⑤若a=40,b=20,B=25°,則滿足條件的△ABC僅有一個;
其中正確結(jié)論的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:a1=1,an+1= ,(n∈N*),若bn+1=(n﹣λ)( +1),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求的單調(diào)區(qū)間;

(2)當時,若存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案