已知正方形ABCD的邊長為1,P、Q分別為邊AB、DA上的點(diǎn).設(shè)∠BCP=α,∠DCQ=β,若△APQ的周長為2,則α+β=( 。
分析:延長AB,作BE=DQ,連接CE,則△CDQ≌△CBE,再證明△QCP≌△ECP,即可得到結(jié)論.
解答:解:延長AB,作BE=DQ,連接CE,則△CDQ≌△CBE
∴∠DCQ=∠BCE,DQ=BE,CQ=CE
∴∠QCE=∠BCE+∠BCQ=∠DCQ+∠BCQ=90°
設(shè)DQ=x,BP=y,則AQ=a-x,AP=a-y,PE=DQ+PB=x+y,
PQ=△APQ周長-AQ-AP=2a-(a-x)-(a-y)=x+y
∴△QCP≌△ECP (SSS)
∴∠QCP=∠PCE,
∴∠QCP=
90°
2
=45°
∴α+β=45°
故選;C.
點(diǎn)評:本題考查三角形的全等,考查學(xué)生分析問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為1,設(shè)
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
-
b
+
c
|等于( 。
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為
2
,
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習(xí)冊答案