14.函數(shù)$f(x)=sinxcosx-\sqrt{3}{cos^2}x$的圖象可由函數(shù)$g(x)=sin(2x+\frac{π}{3})-\frac{{\sqrt{3}}}{2}$的圖象向右平移k(k>0)個單位得到,則k的最小值為$\frac{π}{3}$.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:∵函數(shù)$f(x)=sinxcosx-\sqrt{3}{cos^2}x$=$\frac{1}{2}$sin2x-$\sqrt{3}$•$\frac{1+cos2x}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
函數(shù)$g(x)=sin(2x+\frac{π}{3})-\frac{{\sqrt{3}}}{2}$的圖象向右平移k(k>0)個單位得到y(tǒng)=sin[2(x-k)+$\frac{π}{3}$]-$\frac{\sqrt{3}}{2}$的圖象,
故根據(jù)題意可得$\frac{π}{3}$-2k=-$\frac{π}{3}$+2nπ,n∈Z,則k的最小正值為$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=xex+c有兩個零點,則c的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c,且$a=4,cosA=\frac{3}{4},sinB=\frac{{5\sqrt{7}}}{16},c>4$.
(1)求b;
(2)已知△ABC內(nèi)切圓的半徑$r=\frac{2S}{l}$,其中S為△ABC的面積,l為△ABC的周長,求△ABC內(nèi)切圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則有( 。
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某校A,B,C,D四門課外選修課的學(xué)生人數(shù)如下表,現(xiàn)用分層抽樣的方法從中選取15人參加學(xué)校的座談會.
選修課學(xué)生人數(shù)
A20
B30
C40
D60
(1)應(yīng)分別從A,B,C,D四門課中各抽取多少名學(xué)生;
(2)從抽取的15名學(xué)生中再隨機抽取2人,求這2人的選修課恰好不同的概率;
(3)若從C,D兩門課中抽取的學(xué)生中再隨機抽取3人,用X表示其中選修C的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下面是函數(shù)y=f(x)的部分對應(yīng)值,則f[f($\sqrt{3}$)]等于(  )
x-3-2-10$\sqrt{2}$$\sqrt{3}$$\sqrt{5}$
y$\sqrt{3}$$\sqrt{2}$0$\sqrt{5}$-30-1
A.0B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-x2+ax,
(1)當(dāng)x∈(1,+∞)時,函數(shù)f(x)為遞減函數(shù),求a的取值范圍;
(2)設(shè)f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),x1,x2是函數(shù)f(x)的兩個零點,且x1<x2,求證$f'({\frac{{{x_1}+{x_2}}}{2}})<0$
(3)證明當(dāng)n≥2時,$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{lnn}>1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個命題中,其中真命題是( 。
①“若xy=1,則lgx+lgy=0”的逆命題;
②“若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)”的否命題;
③“若b≤0,則方程x2-2bx+b2+b=0有實根”的逆否命題;
④“等邊三角形的三個內(nèi)角均為60°”的逆命題.
A.①②B.①②③④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的方程9x+(a+4)•3x+4=0有實數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-∞,-8]∪[0,+∞)B.(-∞,-4)C.[-8,-4)D.(-∞,-8]

查看答案和解析>>

同步練習(xí)冊答案