19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

分析 利用冪函數(shù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$<$(\frac{1}{8})^{\frac{1}{3}}$=$\frac{1}{2}$,b=log93=$\frac{1}{2}$,c=3${\;}^{\frac{1}{9}}$>1,
∴c>b>a.
故選:D.

點評 本題考查了冪函數(shù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)兩個焦點的坐標(biāo)分別是(0,5),(0,-5),橢圓上一點P到兩焦點的距離之和為26;
(2)焦點在坐標(biāo)軸上,且經(jīng)過A($\sqrt{3}$,-2)和B(-2$\sqrt{3}$,1)兩點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=mxlnx+$\frac{m}{e}$+1(m≠0),g(x)=x2eax(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m>0時,若對任意的x1,x2∈(0,2],f(x1)>g(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義域為R的函數(shù)f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函數(shù).
(1)求實數(shù)a的值,并判斷f(x)的單調(diào)性(不用證明);
(2)已知不等式f(logm$\frac{3}{4}$)+f(-1)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知p:對?n∈[-1,1],不等式a2-5a-3≥$\sqrt{{n}^{2}+8}$恒成立;命題q:x2-2x+1-m2≤0(m>0).
(1)若p是真命題,求a的取值范圍;
(2)若p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.cos20°sin50°-cos70°sin40°=$\frac{1}{2}$;cos20°+cos100°+cos140°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|<$\frac{π}{2}$)的最小正周期為π,且圖象上有一個最低點為M($\frac{7π}{12}$,-3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在[0,π]的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果冪函數(shù)f(x)的圖象經(jīng)過點(2,8),則f(3)=27.設(shè)g(x)=f(x)+x-m,若函數(shù)g(x)在(2,3)上有零點,則實數(shù)m的取值范圍是10<m<30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA∥平面MBD;
(2)求二面角P-BD-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案