試求直線2x-y+4=0關(guān)于點(diǎn)P(3,-1)對(duì)稱的直線方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C的中心在原點(diǎn),以拋物線y2=2
3
x-4
的頂點(diǎn)為雙曲線的右焦點(diǎn),拋物線的準(zhǔn)線為雙曲線的右準(zhǔn)線.
(1)試求雙曲線C的方程;
(2)設(shè)直線l:y=2x+1與雙曲線C交于A、B兩點(diǎn),求|AB|;
(3)對(duì)于直線L:y=kx+1,是否存在這樣的實(shí)數(shù)k,使直線L與雙曲線C的交點(diǎn)A、B關(guān)于直線y=ax(a為常數(shù))對(duì)稱,若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選修4-2:矩陣與變換】
設(shè)a,b∈R,若矩陣A=
a
-1
把直線l:2x+y一7=0變換為另一直線l':9x+y一91=0,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,直線l過(guò)點(diǎn)A(4,0),B(0,2),且與橢圓C相切于點(diǎn)P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(0,2)的動(dòng)直線與曲線E:y=x+
2
x
(x>0)
相交于不同的兩點(diǎn)M、N,曲線E在點(diǎn)M、N處的切線交于點(diǎn)H.試問(wèn):點(diǎn)H是否在某一定直線上,若是,試求出定直線的方程;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求出其坐標(biāo);若曲線y=x+
p
x
(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

同步練習(xí)冊(cè)答案