已知函數(shù)
(I)求f(log23)的值
(II)證明f(x)的是奇函數(shù);
(III)求f(x)的值域.
【答案】分析:(I)由函數(shù),知f(log23)=,由此利用對(duì)數(shù)的恒等式,能求出結(jié)果.
(II)由,知=-=-f(x),由此能證明f(x)為R上的奇函數(shù).
(III)由=1-,利用2x>0,得,由此能求出f(x)的值域.
解答:解:(I)∵函數(shù),
∴f(log23)===
(II)∵,
∴f(x)的定義域?yàn)镽,

=
=-
=-f(x),
∴f(x)為R上的奇函數(shù).
(III)==1-
∵2x>0,
∴2x+1>1,
,
,

,
∴f(x)的值域是(-1,1).
點(diǎn)評(píng):本題考查對(duì)數(shù)恒等式的應(yīng)用和對(duì)數(shù)奇偶性的證明,求對(duì)數(shù)函數(shù)值域的方法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測(cè)試卷10(解析版) 題型:解答題

已知函數(shù)
(I )求f(x)的最小正周期;
(Ⅱ)若將f(x)的圖象按向量平移得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河北省衡水市冀州中學(xué)高考保溫?cái)?shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(I)求f(x)最小正周期和單調(diào)遞減區(qū)間;
(II)若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省百校論壇高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)求f(x)最小正周期和單調(diào)遞減區(qū)間;
(II)若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期第七次測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

   (I)求f(x)在[0,1]上的極值;

   (II)若對(duì)任意成立,求實(shí)數(shù)a的取值范圍;

   (III)若關(guān)于x的方程在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省信陽高中高三第一次大考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(I)求f(x)的單調(diào)區(qū)間;
(II)求證:不等式恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案