設(shè)數(shù)列{an}的通項為an=2n-7(n∈N),則|a1|+|a2|+|a3|+…|a15|=____________.
科目:高中數(shù)學 來源: 題型:044
已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(Ⅰ)求數(shù)列{bn}的通項bn;
(Ⅱ)設(shè)數(shù)列{an}的通項an=loga(1+)(其中a>0,且a≠1),記Sn是數(shù)列{an}的前n項和.試比較Sn與logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源:數(shù)學教研室 題型:044
(Ⅰ)求數(shù)列{bn}的通項bn;
(Ⅱ)設(shè)數(shù)列{an}的通項an=loga(1+)(其中a>0,且a≠1),記Sn是數(shù)列{an}的前n項和.試比較Sn與logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖南省高三第三次月考文科數(shù)學試卷 題型:選擇題
設(shè)數(shù)列{an}的通項公式為,則其前14項和S14=( )
A 25 B 26 C 27 D 28
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求數(shù)列{bn}的通項bn;
(2)設(shè)數(shù)列{an}的通項an=loga(1+)(其中a>0,且a≠1),
記Sn是數(shù)列{an}的前n項和.試比較Sn與logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(Ⅰ)求數(shù)列{bn}的通項bn;
(Ⅱ)設(shè)數(shù)列{an}的通項an=lg(1+),記Sn是數(shù)列{an}的前n項和,試比較Sn與lgbn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com