二次曲線,m∈[-3,-1]時(shí),該曲線的離心率e的取值范圍是
[     ]
A.
B.
C.
D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)已知二次曲線
x2
4
+
y2
m
=1,則當(dāng)m∈[-2,-1]
時(shí),該曲線的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M過定點(diǎn)D(0,2),圓心M在二次曲線y=
1
4
x2
上運(yùn)動(dòng).
(1)若圓M與y軸相切,求圓M方程;
(2)已知圓M的圓心M在第一象限,半徑為
5
,動(dòng)點(diǎn)Q(x,y)是圓M外一點(diǎn),過點(diǎn)Q與 圓M相切的切線的長為3,求動(dòng)點(diǎn)Q(x,y)的軌跡方程;
(3)若圓M與x軸交于A,B兩點(diǎn),設(shè)|AD|=a,|BD|=b,求
b
a
的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)若雙曲線Ck與直線y=x+1有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;
(3)m、n為正整數(shù),且m<n,是否存在兩條曲線Cm、Cn,其交點(diǎn)P與點(diǎn)F1(-
5
,0),F2(
5
,0)
滿足PF1⊥PF2,若存在,求m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
(2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對(duì)上面問題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案