已知兩點A(1,0),B(1,
3
)
,O為坐標原點,點C在第二象限,且∠AOC=
6
,設
OC
=-2
OA
OB
,(λ∈R)
,則λ等于(  )
A、-
1
2
B、
1
2
C、-1
D、1
分析:根據(jù)三角函數(shù)的定義可設C(-
3
2
r,
1
2
r
),由
OC
=-2
OA
OB
可得(-
3
2
r,
1
2
r
)=(-2,0)+(λ,
3
λ
),解方程可求λ
解答:解:由已知∠AOC=
6
,根據(jù)三角函數(shù)的定義可設C(-
3
2
r,
1
2
r

OC
=-2
OA
OB

∴(-
3
2
r,
1
2
r
)=(-2,0)+(λ,
3
λ

-
3
r
2
= λ-2
r
2
=
3
λ

解方程可得,λ=
1
2

故選B.

精英家教網(wǎng)
點評:本題主要考查了三角函數(shù)的定義的簡單應用,平面向量的坐標表示的加法運算,屬于基礎試題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩點A(1,0),B(b,0),若拋物線y2=4x上存在點C,使得△ABC為正三角形,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點A(1,0),B(1,
3
3
),O為坐標原點,點C在第三象限,且∠AOC=
3
,設
OC
=2
OA
OB
,則λ等于(  )
A、-2B、2C、-3D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淄博一模)在平面直角坐標系內(nèi)已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標保持不變,縱坐標擴大到原來的
2
倍后得到點Q(x,
2
y)
,且滿足
AQ
BQ
=1

(I)求動點P所在曲線C的方程;
(II)過點B作斜率為-
2
2
的直線l交曲線C于M、N兩點,且
OM
+
ON
+
OH
=
0
,又點H關于原點O的對稱點為點G,試問M、G、N、H四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點A(-1,0),B(0,2),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值與最小值分別是( 。
A、2,
1
2
(4-
5
)
B、
1
2
(4+
5
)
,
1
2
(4-
5
)
C、
5
,4-
5
D、
1
2
(
5
+2)
1
2
(
5
-2)

查看答案和解析>>

同步練習冊答案