函數(shù)y=axy=(
1
a
)x
(a>0,且a≠1)的圖象關(guān)于(  )
A、x軸對(duì)稱B、y軸對(duì)稱
C、原點(diǎn)對(duì)稱D、直線y=x對(duì)稱
分析:將原函數(shù)轉(zhuǎn)化一下為y=(
1
a
)
x
=a-x
如,再作圖可知.
解答:精英家教網(wǎng)解:y=(
1
a
)
x
=a-x

不妨設(shè)a>1如圖所示:關(guān)于y軸對(duì)稱.
故選B
點(diǎn)評(píng):本題主要考查函數(shù)間的變換,通過(guò)變換來(lái)理解兩函數(shù)間的內(nèi)在聯(lián)系,從而來(lái)認(rèn)識(shí),研究新的函數(shù),還考查了學(xué)生的數(shù)形結(jié)合的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax與y=-
bx
在(0,+∞)上都是減函數(shù),則函數(shù)y=ax3+bx2+5的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax與y=-
bx
在(0,+∞)上都是減函數(shù),則函數(shù)y=ax2+bx在(0,+∞)上是單調(diào)遞
減函數(shù)
減函數(shù)
函數(shù).(填“增函數(shù)”或“減函數(shù)”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)0<a<1時(shí),在同一坐標(biāo)系中,函數(shù)y=ax與y=logax的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,函數(shù)y=ax與y=loga(-x)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求出其坐標(biāo);若曲線(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

同步練習(xí)冊(cè)答案