如圖2-1-9,已知圓心角∠AOB的度數(shù)為100°,則圓周角∠ACB的度數(shù)為…(  )

圖2-1-9

A.80°         B.100°           C.120°               D.130°

思路解析:要求∠ACB,只需求所對的圓心角,然后利用同弧所對的圓周角等于圓心角的一半即可求解.

解:∵∠AOB =100°,∴所對的圓心角為260°,∠ACB =130°.故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知二次函數(shù)y=-x2+9,矩形ABOC的頂點A在第一象限內(nèi),且A在拋物線上,頂點B、C分別在y軸、x軸上,設(shè)點A的坐標(biāo)為(x,y).
(1)試求矩形ABOC的面積S關(guān)于x的函數(shù)解析式S=S(x),并求出該函數(shù)的定義域;
(2)是否存在這樣的矩形ABOC,使它的面積為6,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河西區(qū)二模)某商場在五一促銷活動中,對5月1日9時至14時的銷售額進(jìn)行統(tǒng)計,某頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售額為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖2-5-9,已知PA切⊙OA,割線PCB交⊙OC、B兩點.

圖2-5-9

(1)求證: =.

(2)若Q為弧BC中點,AQBCD點.求證: =.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖2-5-18,已知⊙O1和⊙O2相交于點A、B,過點A作⊙O1的切線交⊙O2于點C,過點B作兩圓的割線,分別交⊙O1、⊙O2于點D、E,DEAC相交于點P.

圖2-5-18

(1)求證:ADEC;

(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案