| ||||
|
1 | ||
|
6×6 |
3×4×5 |
1 |
3 |
1 |
5 |
| ||
|
1 | ||
|
6 |
10 |
1 |
3 |
1 |
5 |
| ||
|
| ||
|
24 |
5×3×4 |
2 |
5 |
| ||
|
4 |
10 |
1 |
2 |
1 |
5 |
1 |
5 |
2 |
5 |
3 |
5 |
2 |
5 |
3 |
5 |
1 |
5 |
2 |
5 |
1 |
5 |
1 |
5 |
12 |
25 |
6 |
25 |
18 |
25 |
. |
A |
1 | ||
|
1 |
5 |
| ||
|
1 |
5 |
| ||
|
1 | ||
|
6 |
10 |
2 |
3 |
2 |
5 |
. |
A |
1 |
5 |
1 |
5 |
2 |
5 |
7 |
25 |
7 |
25 |
18 |
25 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
(注意:在試題卷上作答無效)
已知5只動物中有1只患有某種疾病,需要通過化驗(yàn)血液來確定患病的動物.血液化驗(yàn)結(jié)果呈陽性的即為患病動物,呈陰性即沒患病.下面是兩種化驗(yàn)方案:
方案甲:逐個化驗(yàn),直到能確定患病動物為止;
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗(yàn),直到能確定患病動物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn)。
求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知5只動物中有1只患有某種疾病,需要通過化驗(yàn)血液來確定患病的動物.血液化驗(yàn)結(jié)果呈陽性的即為患病動物,呈陰性的即沒患病.下面是兩種化驗(yàn)方案:
方案甲:逐個化驗(yàn),直到能確定患病動物為止.
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗(yàn),直到能確定患病動物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).
(1)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;
(2) 表示依方案乙所需化驗(yàn)次數(shù),求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(全國Ⅰ卷文20)已知5只動物中有1只患有某種疾病,需要通過化驗(yàn)血液來確定患病的動物.血液化驗(yàn)結(jié)果呈陽性的即為患病動物,呈陰性即沒患病.下面是兩種化驗(yàn)方案:
方案甲:逐個化驗(yàn),直到能確定患病動物為止.
方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗(yàn),直到能確定患病動物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn).
求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com