展開(kāi)式中的常數(shù)項(xiàng).

答案:
解析:

  解析:把|x|+暫時(shí)看成一項(xiàng),按差的立方公式展開(kāi),然后逐項(xiàng)考察各項(xiàng)的常數(shù)項(xiàng).

  原式=(|x|+)3-3(|x|+)2·2+3(|x|+)·22-23

  (|x|+)3與12(|x|+)兩項(xiàng)中均無(wú)常數(shù)項(xiàng),而-6(|x|+)2的常數(shù)是-12,

  故原式展開(kāi)式中的常數(shù)項(xiàng)為(-12)+(-8)=-20.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二項(xiàng)式(
x
+
1
x
)n
的展開(kāi)式中各項(xiàng)系數(shù)的和為64.
(I)求n;
(II)求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若(x-
1
x
)n
展開(kāi)式中第5項(xiàng)、第6項(xiàng)的二項(xiàng)式系數(shù)最大,求展開(kāi)式中x3的系數(shù);
(2)在(x
x
+
1
x4
)n
的展開(kāi)式中,第3項(xiàng)的二項(xiàng)式系數(shù)比第2項(xiàng)的二項(xiàng)式系數(shù)大44,求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
1
2
x
)n
展開(kāi)式中的前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求n的值;
(2)求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2x+
1x2
)n
的展開(kāi)式中,第三項(xiàng)的二項(xiàng)式系數(shù)比第二項(xiàng)的二項(xiàng)式系數(shù)大27,求展開(kāi)式中的常數(shù)項(xiàng)及所有項(xiàng)系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x4+
1x
n的展開(kāi)式中,第三項(xiàng)的二項(xiàng)式系數(shù)比第二項(xiàng)的二項(xiàng)式系數(shù)大35.
(1)求n的值;       
(2)求展開(kāi)式中的常數(shù)項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案