若a>0且a≠1,且loga
3
4
<1,則實數(shù)a的取值范圍( 。
分析:把1變成底數(shù)的對數(shù),討論底數(shù)與1的關(guān)系,確定函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性整理出關(guān)于a的不等式,得到結(jié)果,把兩種情況求并集得到結(jié)果.
解答:解:∵loga
3
4
<1=logaa,
當a>1時,函數(shù)y=logax是一個增函數(shù),不等式成立,
∴a>1
當0<a<1時,函數(shù)y=logax是一個減函數(shù),解不等式得a<
3
4
,
∴0<a<
3
4

綜上可知a的取值是(0,
3
4
)∪(1,+∞),
故選:C.
點評:本題主要考查對數(shù)函數(shù)單調(diào)性的應(yīng)用、不等式的解法等基礎(chǔ)知識,本題解題的關(guān)鍵是對于底數(shù)與1的關(guān)系,這里應(yīng)用分類討論思想來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設(shè)f(x)的反函數(shù)f-1(x),當a=
2
-1
時,比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+k(a>0且a≠1)的圖象過點(-1,1),其反函數(shù)f-1(x)的圖象過點(8,2).(1)求a,k的值
(2)若將y=f-1(x)的圖象向左平移2個單位,再向上平移1個單位,就得到函數(shù)y=g(x)的圖象,寫出y=g(x)的解析式
(3)若函數(shù)F(x)=g(x2)-f-1(x),求F(x)的最小值及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設(shè)f(x)的反函數(shù)f-1(x),當a=
2
-1
時,比較f-1[g(x)]與-1的大小,證明你的結(jié)論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案