函數(shù)y=cos2(x+
π
4
)-sin2(x+
π
4
)是周期為
 
 
(填“奇”或“偶”)函數(shù).
考點(diǎn):二倍角的余弦
專(zhuān)題:三角函數(shù)的求值
分析:利用倍角公式可得函數(shù)y=cos2(x+
π
4
)-sin2(x+
π
4
)=cos(2x+
π
2
)
=-2sin2x,即可得出.
解答: 解:函數(shù)y=cos2(x+
π
4
)-sin2(x+
π
4
)=cos(2x+
π
2
)
=-2sin2x是周期為π的奇函數(shù).
故答案為:π,奇.
點(diǎn)評(píng):本題考查了倍角公式的應(yīng)用、函數(shù)周期性奇偶性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)合命題p∧(¬q)是真命題,則下列命題中也是真命題的是( 。
A、(¬p)∨q
B、p∨q
C、p∧q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:“若x≥a2+b2,則x≥2ab”,則下列說(shuō)法正確的是(  )
A、命題P的逆命題是“若x<a2+b2,則x<2ab”
B、命題P的逆命題是“若x<2ab,則x<a2+b2
C、命題P的否命題是“若x<a2+b2,則x<2ab”
D、命題P的否命題是“若x≥a2+b2,則x<2ab”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=3|BF|,且|AF|=6,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD如圖1所示,其三視圖如圖2所示,其中正視圖和側(cè)視圖都是直角三角形,俯視圖是矩形.其中E是PD的中點(diǎn).
(Ⅰ)求此四棱錐的體積;
(Ⅱ)求證:PB∥平面ACE;
(Ⅲ)求證:AE⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)銳角α與β滿(mǎn)足sinα-sinβ=-
3
5
,cosα-cosβ=
4
5
,求α-β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
xlnx,x≥1
lnx
x
,0<x<1
,若{an}是公比大于0的等比數(shù)列,且a3a4a5=1,若f(a1)+f(a2)+…+f(a6)=2a1,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若
FP
=4
FQ
,則|QO|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在點(diǎn)x=0處的切線為y=bx.(e≈2.71828).
(1)求函數(shù)f(x)的解析式;
(理科)(2)若k∈Z,且f(x)+
1
2
(3x2-5x-2k)≥0對(duì)任意x∈R恒成立,求k的最大值.
(文科)(2)若f(x)>kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案