設(shè)橢圓=1(a>b>0)的焦點(diǎn)為F1、F2,P是橢圓上任一點(diǎn),若∠F1PF2的最大值為
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線l與橢圓交于M、N兩點(diǎn),且l與以原點(diǎn)為圓心,短軸長(zhǎng)為直徑的圓相切.已知|MN|的最大值為4,求橢圓的方程和直線l的方程.
【答案】分析:(1)由橢圓的定義可知,|PF1|+|PF2|=2a?,由余弦定理可得,COS∠F1PF2=,代入可求離心率
(2)由(I)可得e=,從而可得橢圓方程為y2+4x2=4b2,該直線l:y=kx+m.由直線l與圓x2+y2=b2相切,可得m2=b2(1+k2),聯(lián)立方程可得(4+k2)x2+2kmx+m2-4b2=0而|MN|=4b•≤2b?可求
解答:解:∵橢圓方程為=1(a>b>0)?
(1)|PF1|+|PF2|=2a?
cosF1PF2=
∴e=
(2)∵e=,∴a2=4b2.?
∴橢圓方程為y2+4x2=4b2?
該直線l:y=kx+m.?
∵直線l與圓x2+y2=b2相切,∴m2=b2(1+k2)①?
得(4+k2)x2+2kmx+m2-4b2=0
∵|MN|=4b•≤2b?
當(dāng)且僅當(dāng)k=±時(shí)取等號(hào).
∴l(xiāng):y=±
此時(shí)橢圓方程為:=1.
點(diǎn)評(píng):本題主要考查橢圓的性質(zhì)的簡(jiǎn)單運(yùn)用,及直線與橢圓的位置關(guān)系的應(yīng)用,考查了考試的基本運(yùn)算的能力,屬于綜合性試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2007年天津市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上的一點(diǎn),AF2⊥F1F2,原點(diǎn)O到直線AF1的距離為
(I)證明:
(II)設(shè)Q1,Q2為橢圓上的兩個(gè)動(dòng)點(diǎn),OQ1⊥OQ2,過(guò)原點(diǎn)O作直線Q1Q2的垂線OD,垂足為D,求點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的離心率為e,A為橢圓上一點(diǎn),弦AB,AC分別過(guò)焦點(diǎn)F1,F(xiàn)2
(I)若∠AF1F2=α,∠AF2F1=β,試用α,β表示橢圓的離心率e;
(II)設(shè)數(shù)學(xué)公式1數(shù)學(xué)公式數(shù)學(xué)公式2數(shù)學(xué)公式,當(dāng)A在橢圓上運(yùn)動(dòng)時(shí),求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省九江市都昌二中高三(上)周考數(shù)學(xué)試卷(6)(文科)(解析版) 題型:解答題

設(shè)橢圓=1(a>b>0)過(guò)點(diǎn),且左焦點(diǎn)為
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交與兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿(mǎn)足=,證明:點(diǎn)Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省哈爾濱九中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓=1(a>b>0)過(guò)點(diǎn),且左焦點(diǎn)為
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交與兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿(mǎn)足=,證明:點(diǎn)Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)壓軸試卷集錦(8)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)橢圓=1(a>b>0)的焦距為2c.以點(diǎn)O為圓心,a為半徑作圓M.若過(guò)點(diǎn)P(,0)所作圓M的兩條切線互相垂直,則該橢圓的離心率為_(kāi)_____

查看答案和解析>>

同步練習(xí)冊(cè)答案