15.已知全集U={x|x≤5},集合A={x|-3<x<4},B={x|-5≤x≤3},則(∁UA)∩B=(  )
A.{x|-5≤x≤-3}B.{x|4<x<5,或x≤-3}C.{x|-5<x<-3}D.{x|-5<x<5}

分析 根據(jù)全集U及A求出A的補集,找出A補集與B的交集即可.

解答 解:全集U={x|x≤5},集合A={x|-3<x<4},
則(∁UA)={x|x≤-3,或4≤x≤5},
∵B={x|-5≤x≤3},
∴(∁UA)∩B={x|-5≤x≤-3},
故選:A

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)在(0,+∞)上為增函數(shù),則不等式f(x)>f(8x-16)的解集為( 。
A.(2,$\frac{16}{7}$)B.(-∞,2)C.($\frac{16}{7}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)集合A={x|-1<x<4},B={x|-5<x<$\frac{3}{2}$},C={x|1-2a<x<2a}.若C⊆(A∩B),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.根據(jù)如圖框圖,當輸入x為9時,輸出的y=(  )
A.1B.2C.5D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知△ABC的面積為3$\sqrt{15}$,b-c=2,cos A=-$\frac{1}{4}$,則a的值為( 。
A.4B.2C.$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知tan(α+$\frac{π}{4}$)=$\frac{1}{2}$,且α∈(-$\frac{π}{2}$,0),則$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=( 。
A.$-\frac{{3\sqrt{5}}}{10}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上存在一點P,使得∠F1PF2=120°,其中F1,F(xiàn)2是橢圓的兩焦點,則橢圓離心率e的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)f(x)=x2-2x,x∈[t,t+1](t∈R),函數(shù)f(x)的最小值為g(t)
(1)求g(t)的解析式.
(2)求函數(shù)g(t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.“m>0,n>0”是“方程mx2+ny2=1”表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

同步練習冊答案