已知數(shù)列滿足:是數(shù)列
的前項(xiàng)和
(1)對(duì)于任意實(shí)數(shù),證明數(shù)列不是等比數(shù)列
(2)對(duì)于給定的實(shí)數(shù),求數(shù)列的通項(xiàng),并求出
(3)設(shè)是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有若存在,求的取值范圍,若不存在,說明理由。
(1)證明:假設(shè)存在一個(gè)實(shí)數(shù),使{an}是等比數(shù)列,則有,
即
()2=2
矛盾.所以{an}不是等比數(shù)列.
(2)因?yàn)閎n+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=-(-1)n·(an-3n+21)=-bn
當(dāng)λ≠-18時(shí),b1=-(λ+18) ≠0,由上可知bn≠0,
∴(n∈N+).
故當(dāng)λ≠-18時(shí),數(shù)列{bn}是以-(λ+18)為首項(xiàng),-為公比的等比數(shù)列 。,
當(dāng)λ=-18時(shí),,
(3)由(2)知,當(dāng)λ=-18,bn=0,Sn=0,不滿足題目要求.
∴λ≠-18,
要使a<Sn<b對(duì)任意正整數(shù)n成立,
即a<-(λ+18)·[1-(-)n]〈b(n∈N+)
當(dāng)n為正奇數(shù)時(shí),1<f(n)
∴f(n)的最大值為f(1)=, f(n)的最小值為f(2)= ,
于是,由①式得a<-(λ+18)<
當(dāng)a<b3a時(shí),由-b-18=-3a-18,不存在實(shí)數(shù)滿足題目要求;
當(dāng)b>3a存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b,且λ的取值范圍是(-b-18,-3a-18)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
. 已知數(shù)列滿足
⑴證明:數(shù)列是等比數(shù)列;
⑵求數(shù)列的通項(xiàng)公式;
⑶若數(shù)列滿足證明是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南汝城第一中學(xué)、長(zhǎng)沙實(shí)驗(yàn)中學(xué)高三11月聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題
已知數(shù)列滿足:是數(shù)列的前n項(xiàng)和.數(shù)列前n項(xiàng)的積為,且
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)是否存在常數(shù)a,使得成等差數(shù)列?若存在,求出a,若不存在,說明理由;
(Ⅲ)是否存在,滿足對(duì)任意自然數(shù)時(shí),恒成立,若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:選擇題
已知數(shù)列滿足,則數(shù)列的最小值是
A.25 B.26 C.27 D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列滿足:
是數(shù)列的前項(xiàng)和
(1)對(duì)于任意實(shí)數(shù),證明數(shù)列不是等比數(shù)列;
(2)對(duì)于給定的實(shí)數(shù),求數(shù)列的通項(xiàng),并求出Sn;
(3)設(shè)是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有若存在,求的取值范圍,若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com