(1)已知曲線 y=x3+x-2 在點 P0處的切線 l1 平行直線4x-y-1=0,且點 P0在第三象限,求P0的坐標(biāo);
(2)函數(shù)f(x)=x2+(2-a)x+a-1是偶函數(shù),求曲線y=f(x)在x=1處的切線方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義即可得到結(jié)論.
(2)根據(jù)函數(shù)奇偶性的定義求出a的值,然后利用導(dǎo)數(shù)的幾何意義即可求出切線方程.
解答: 解:(1)設(shè)P0(x,y),則y=x3+x-2 在點 P0處的切線 l1 的斜率k=f′(x)=3x2+1
∵4x-y-1=0的斜率k=4,切線 l1 平行直線4x-y-1=0,
∴k=f′(x)=3x2+1=4,
即x2=1,解得x=±1,
∵點 P0在第三象限,
∴x=-1,此時y=-4,
即P0的坐標(biāo)(-1,-4);
(2)若函數(shù)f(x)=x2+(2-a)x+a-1是偶函數(shù),則2-a=0,解得a=2,
則此時f(x)=x2+1,則f(1)=2,
函數(shù)的導(dǎo)數(shù)為f′(x)=2x,
則曲線y=f(x)在x=1處的切線斜率k=f′(1)=2,
則切線方程為y-2=2(x-1),
即y=2x.
點評:本題主要考查函數(shù)切線的求解,利用導(dǎo)數(shù)的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-y2=1與直線y=kx+1有唯一公共點,求k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0≤α≤2π,sin22α=sinα•sin4α,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=
π
12
時取得最大值4
(1)求f(x)的解析式
(2)若f(
2
3
α
+
π
12
)=2
3
,求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四個不同的小球放入四個不同的盒子里,求在下列條件下各有多少種不同的放法?
(1)恰有一個盒子里放2個球;
(2)恰有兩個盒子不放球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點F的距離為3,延長MF交拋物線于點N.
(1)求拋物線的方程;
(2)求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果(
3
+2x)2013=a0+a1x+a2x2+…+a2013x2013,那么(a1+a3+a5+…+a20132-(a0+a2+a4+…+a20122=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的個數(shù)為
 
 個
①一個命題的逆命題為真,它的否命題也一定為真;
②若一個命題的否命題為假,則它本身一定為真;
x>1
y>2
x+y>3
xy>2
的充要條件;
④“x=3”是“|x|=3”成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x-
π
6
),x∈[0,
3
]的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案