已知.
當(dāng)時(shí),解不等式;
(2)若,解關(guān)于的不等式.
(1);(2)當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;
當(dāng)時(shí),等式的解集為.
解析試題分析:(1)當(dāng),,令,則,則由一元二次不等式與二次函數(shù)及一元二次方程三者之間的關(guān)系可知,不等式的解集為;(2)一元二次方程的兩根為,根據(jù)一元二次不等式與一元二次方程之間的關(guān)系可知,需對與的大小關(guān)系分以下三種情況討論:當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.
試題解析:(1)當(dāng)時(shí),有不等式, 2分
∴,∴不等式的解集為; 4分
(2)∵不等式,一元二次方程,兩根為,
∴當(dāng)時(shí),有,∴不等式的解集為; 7分
當(dāng)時(shí),有,∴不等式的解集為; 10分
當(dāng)時(shí),有,∴不等式的解集為. 12分
考點(diǎn):1.一元二次不等式、二次函數(shù)、一元二次方程三個(gè)二次之間的關(guān)系;2.分類討論的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若存在,使得的不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式存在實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
定義:關(guān)于的兩個(gè)不等式和的解集分別為和,則稱這兩個(gè)不等式為對偶不等式。如果不等式與不等式為對偶不等式,且,則=_______________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com