已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}的通項an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Snlogabn+1的大小,并證明你的結(jié)論.
(1)bn=3n-2.(2)當(dāng)a>1時,Snlogabn+1,當(dāng)0<a<1時,Snlogabn+1
(1)設(shè)數(shù)列{bn}的公差為d,
由題意得?∴bn=3n-2.
(2)由bn=3n-2,知Sn=loga(1+1)+loga+…+loga
=loga
logabn+1=loga,于是,比較Snlogabn+1的大小?比較
(1+1)的大小.
取n=1,有1+1=>,
取n=2,有(1+1)>>.
推測(1+1),(*)
①當(dāng)n=1時,已驗證(*)式成立;
②假設(shè)n=k(k≥1)時(*)式成立,即(1+1),
則當(dāng)n=k+1時,
(1+1)>.
>0,∴
從而(1+1),即當(dāng)n=k+1時,(*)式成立.由①②知(*)式對任意正整數(shù)n都成立.于是,當(dāng)a>1時,Snlogabn+1,當(dāng)0<a<1時,Snlogabn+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是否存在常數(shù)a,b使等式對于一切n∈N*都成立?若存在,求出a,b的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)有n(n∈N,n≥2)條直線,其中任何兩條不平行,任何三條不過
同一點(diǎn),證明:交點(diǎn)的個數(shù)f(n)=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較的大小,并說明理由.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,,…,,….S為其前n項和,求S、S、S、S,推測S公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)若|x|<1,|y|<1,證明:|
x-y
1-xy
|<1

(2)某高級中學(xué)共有2013名學(xué)生,他們畢業(yè)于10所不同的初級中學(xué),證明:該高級中學(xué)至少有202名學(xué)生畢業(yè)于同一所初級中學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

利用數(shù)學(xué)歸納法證明不等式1+<f(n) (n≥2,)的過程中,由n=k變到n=k+1時,左邊增加了(   )
A.1項B.k項C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,不等式,,,…,可推廣為,則等于           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明“12+22+32+…+n2n(n+1)(2n+1)(n∈N*)”,當(dāng)n=k+1時,應(yīng)在n=k時的等式左邊添加的項是________.

查看答案和解析>>

同步練習(xí)冊答案