求證:A(1,3),B(5,7),C(10,12)三點在同一直線上.

答案:
解析:

  證明:∵kAB1,kAC1

  ∴kABkAC.∴A、B、C三點共線.

  分析:已知三點坐標,可選用任意兩點的斜率公式證明.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知:a,b,c都是正實數(shù),且ab+bc+ca=1.求證:a+b+c≥
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當a=-
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.
(文)(Ⅲ)利用ln(x+1)≤x,求證:ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
(其中n∈N*,e是自然對數(shù)的底數(shù)).
(Ⅲ)求證:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題部分
(1)(選修4-4 參數(shù)方程與極坐標)(本小題滿分7分)
在極坐標系中,過曲線L:ρsin2θ=2acosθ(a>0)外的一點A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫出曲線L和直線l的普通方程(以極點為原點,極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數(shù)列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:
(1)3∈A;    
(2)偶數(shù)4k-2(k∈Z)不屬于A.

查看答案和解析>>

同步練習冊答案