已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a,b,c成等比數(shù)列,cosB=
3
4

(Ⅰ)求
1
tanA
+
1
tanC
的值;
(Ⅱ)設
BA
BC
=
3
2
,求a+c
的值.
分析:(Ⅰ)由cosB的值和B的范圍,利用同角三角函數(shù)間的基本關系求出sinB的值,又a,b,c成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì)及正弦定理化簡得到一個關系式,然后把所求的式子利用同角三角函數(shù)間的基本關系及兩角和與差的正弦函數(shù)公式化簡后,將得到的關系式和sinB的值代入即可求出值;
(Ⅱ)根據(jù)平面向量的數(shù)量積得運算法則及cosB的值化簡
BA
BC
=
3
2
,即可得到ac的值,進而得到b2的值,然后由余弦定理和完全平方公式,由b2和ac及cosB的值,即可得到a+c的值.
解答:解:(Ⅰ)由cosB=
3
4
,得sinB=
1-(
3
4
)
2
=
7
4
,
由b2=ac及正弦定理得sin2B=sinAsinC.
于是
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sinCcosA+cosCsinA
sinAsinC
=
sin(A+C)
sin2B
=
sinB
sin2B
=
1
sinB
=
4
7
7
.(6分)
(Ⅱ)由
BA
BC
=
3
2
得ca•cosB=
3
2
,由cosB=
3
4
,可得ca=2,即b2=2

由余弦定理:b2=a2+c2-2ac•cosB,又b2=ac=2,cosB=
3
4

得a2+c2=b2+2ac•cosB=2+4×
3
4
=5,
則(a+c)2=a2+c2+2ac=5+4=9,解得:a+c=3.(12分)
點評:此題考查學生靈活運用同角三角函數(shù)間的基本關系及兩角和與差的正弦函數(shù)公式化簡求值,靈活運用余弦定理及等比數(shù)列的性質(zhì)化簡求值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,滿足A<B<C,且sinA:sinB:sinC=5:7:k.
(1)已知k=11,求△ABC的最大角的余弦值;
(2)若a=10,且△ABC為鈍角三角形,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A、B、C的對邊的邊長為a、b、c,且bcosC=(2a-c)cosB,則y=cos2A+cos2C的最小值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,a=1, b=
3
, cosC=-
3
3

(1)求△ABC的面積;
(2)求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,A=
π6
,b=2acosB

(Ⅰ)求B;
(Ⅱ)若a=2.求△ABC的面積.

查看答案和解析>>

同步練習冊答案