已知{an}是等比數(shù)列,且公比q≠-1,Sn是{an}的前n項(xiàng)和,已知4S3=a4-2,4S2=5a2-2,則公比q=( )
A.5
B.4
C.3
D.2
【答案】分析:把已知的等式左右兩邊相減,利用S3-S2=a3變形后,再利用等邊數(shù)列的通項(xiàng)公式化簡(jiǎn),根據(jù)a1與q不為0,兩邊同時(shí)除以a1q后,得到關(guān)于q的方程,求出方程的解即可得到公比q的值.
解答:解:由4S3=a4-2①,4S2=5a2-2②,
①-②得:4a3=a4-5a2,即4a1q2=a1q3-5a1q,
又a1≠0,q≠0,
∴q2-4q-5=0,即(q-5)(q+1)=0,
解得:q=5或q=-1(由q≠-1,故舍去),
則公比q=5.
故選A
點(diǎn)評(píng):此題考查了等比數(shù)列的性質(zhì),通項(xiàng)公式及求和公式,熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:溫州一模 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案