設(shè)向量
a
=(4cosα,sinα)
b
=(sinβ,4cosβ),
c
=(cosβ-4sinβ)
,若
a
b
-
2c
垂直,則tan(α+β)的值為
2
2
分析:利用向量的坐標(biāo)運(yùn)算由
a
•(
b
-
2c
)=0可得到sin(α+β)=2cos(α+β),從而可得tan(α+β)的值.
解答:解:∵
b
-
2c
=(sinβ-2cosβ,4cosβ+8sinβ),
a
⊥(
b
-
2c
),
∴4cosα•(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,
∴sin(α+β)=2cos(α+β),
∴tan(α+β)=2.
故答案為:2.
點(diǎn)評(píng):本題考查數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,考查三角函數(shù)中的恒等變換應(yīng)用,熟練掌握向量的坐標(biāo)運(yùn)算是基礎(chǔ),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ)

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|
的最大值;
(3)若tanαtanβ=16,求證:
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(4cosα,sinα)
,
b
=(sinβ,4cosβ)
,
c
=(cosβ,-4sinβ)
,
(1)若
a
⊥(
b
-2
c
)
,求tan(α+β)的值
(2)若tanαtanβ=16,證明:
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(4cosα, sinα)
b
=(sinβ, 4cosβ)
,
c
=(cosβ, -4sinβ)

(1)求|
b
+
c
|的最大值;
(2)若
a
b
-2
c
垂直,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇 題型:解答題

設(shè)向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ)

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|
的最大值;
(3)若tanαtanβ=16,求證:
a
b

查看答案和解析>>

同步練習(xí)冊(cè)答案