已知正△ABC的邊長為, CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖所示.
(1)試判斷折疊后直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)若棱錐E-DFC的體積為,求的值;
(3)在線段AC上是否存在一點(diǎn)P,使BP⊥DF?如果存在,求出的值;如果不存在,請說明理由.
(1)平行; (2); (3)存在AP:AC=1:3
解析試題分析:(1)由于E、F分別是AC和BC邊的中點(diǎn),所以在翻折后的三角形ABC中,.由線面平行的判定定理可得結(jié)論.
(2)由棱錐E-DFC的體積為,因?yàn)椤鰽BC沿CD翻折成直二面角A-DC-B,并且平面BCD,即由三棱錐的體積公式,即可求出結(jié)論.
(3)在線段AC上是否存在一點(diǎn)P,使BP⊥DF,即轉(zhuǎn)化為直線與平面垂直的問題,假設(shè)存在點(diǎn)P作,k為垂足,連結(jié)BK即可得到直線DF 平面BPK,所以可得.通過三角形的相似即可得到所求的結(jié)論.
(1)AB//平面DEF,
如圖.在△ABC中,∵E,F分別是AC,BC的中點(diǎn),故EF//AB,
又AB平面DEF,∴AB//平面DEF, 4分
(2)∵AD⊥CD,BD⊥CD, 將△ABC沿CD翻折成直二面角A-DC-B
∴AD⊥BD,AD⊥平面BCD,取CD中點(diǎn)M,則EM//AD,∴EM⊥平面BCD,且EM=a/2
,a="2." 8分
(3)存在滿足條件的點(diǎn)P.
做法:因?yàn)槿切蜝DF為正三角形,過B做BK⊥DF,延長BK交DC于K,過K做KP//DA,交AC于P.則點(diǎn)P即為所求.
證明:∵AD⊥平面BCD , KP//DA,∴PK⊥平面BCD,PK⊥DF,又 BK⊥DF,PK∩BK=K,∴DF⊥平面PKB,DF⊥PB.又∠DBK=∠KBC=∠BCK=30°,∴DK=KF=KC/2.
故AP:OC=1:2,AP:AC=1:3 12分
考點(diǎn):1.圖形的翻折.2.線面間的位置關(guān)系.3.開放性題的等價(jià)變換.4.空間想象力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某一幾何體的三視圖如圖所示.按照給出的尺寸(單位:cm),(1)請寫出該幾何體是由哪些簡單幾何體組合而成的;(2)求出這個(gè)幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
宇宙深處有一顆美麗的行星,這個(gè)行星是一個(gè)半徑為r(r>0)的球。人們在行星表面建立了與地球表面同樣的經(jīng)緯度系統(tǒng)。已知行星表面上的A點(diǎn)落在北緯60°,東經(jīng)30°;B點(diǎn)落在東經(jīng)30°的赤道上;C點(diǎn)落在北緯60°,東經(jīng)90°。在赤道上有點(diǎn)P滿足PB兩點(diǎn)間的球面距離等于AB兩點(diǎn)間的球面距離。
(1)求AC兩點(diǎn)間的球面距離;
(2)求P點(diǎn)的經(jīng)度;
(3)求AP兩點(diǎn)間的球面距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長為8,高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個(gè)底邊長為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點(diǎn).
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形的邊長為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)在線段上是否存在一點(diǎn),使得平面?若存在,求;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱柱的直觀圖和三視圖如下圖所示,其側(cè)視圖為正三角形(單位cm)
⑴當(dāng)x=4時(shí),求幾何體的側(cè)面積和體積
⑵當(dāng)x取何值時(shí),直線AB1與平面BB1C1C和平面A1B1C1所成角大小相等。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com