若a>2b>0,則下列不等式:①;②;③;④.其中結(jié)論成立的序號為   
【答案】分析:利用不等式的性質(zhì)或通過取特殊值即可判斷出.
解答:解:①∵a>2b>0,∴a-2b>0,b>0.∴?b<a-2b,即a>3b,不一定成立;
②∵a>2b>0,∴a-b>b>0,∴,化為,因此②成立;
③∵a>2b>0,∴a-2b>0,b>0,但是可能a-2b>b>0,或b>a-2b>0,或a-2b=b>0,因此③不一定成立;
④∵②正確,∴④一定不正確.
綜上可知:只有②正確.
故答案為②.
點(diǎn)評:熟練掌握不等式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)f(x)=x3-3x的圖象C1向右平移u個單位長度,再向下平移v個單位長度后得到圖象C2、若對任意的u>0,曲線C1與C2至多只有一個交點(diǎn),則v的最小值為(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對稱,則有f(x)+f(2a-x)=2b對任意定義域內(nèi)的x均成立.
(1)若函數(shù)f(x)=
x2+mx+mx
的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)=-x2+nx+1(x>0)在(1)的條件下,若對實(shí)數(shù)x>0及t>0時恒有不等式g(x)<f(t)成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對稱,且當(dāng)x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實(shí)數(shù)x<0及t>0,恒有g(shù)(x)+tf(t)>0,求正實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省蘭州一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

把函數(shù)f(x)=x3-3x的圖象C1向右平移u個單位長度,再向下平移v個單位長度后得到圖象C2、若對任意的u>0,曲線C1與C2至多只有一個交點(diǎn),則v的最小值為( )
A.2
B.4
C.6
D.8

查看答案和解析>>

同步練習(xí)冊答案