設(shè)f(x)是函數(shù)y=2x(x∈R)的反函數(shù),則f(4)的值為(  )
分析:根據(jù)反函數(shù)的定義,令f(4)=a則滿足4=2a,解之即得實(shí)數(shù)a的值.
解答:解:∵f(x)是函數(shù)y=2x(x∈R)的反函數(shù),
∴令f(4)=a,則滿足4=2a,解之得a=2
故選:C
點(diǎn)評:本題給出f(x)是函數(shù)y=2x(x∈R)的反函數(shù),求f(4)的值.著重考查了反函數(shù)的定義及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f′′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)數(shù),若f′′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo);
(Ⅱ)求證f(x)的圖象關(guān)于“拐點(diǎn)”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關(guān)“拐點(diǎn)”的一個結(jié)論(此結(jié)論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點(diǎn)”為B(0,1),且一次項(xiàng)系數(shù)為0,當(dāng)x1>0,x2>0(x1≠x2)時(shí),試比較
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)定義:設(shè)f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x))為函數(shù)y=f(x)的“拐點(diǎn)”.已知函數(shù)f(x)=x3-6x2+5x+4,請回答下列問題.(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點(diǎn)”的結(jié)論;
(3)寫出一個三次函數(shù)G(x),使得它的“拐點(diǎn)”是(1,3)(不要過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數(shù)的對稱中心為
(
1
2
,1)
(
1
2
,1)
,計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''是f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對稱中心為
(
1
2
,1)
(
1
2
,1)
;
(2)計(jì)算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn):“任何一個三次函數(shù)都有‘拐點(diǎn)’;任何一個三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,解答問題:若函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
的值是( 。

查看答案和解析>>

同步練習(xí)冊答案