分析 (1)利用賦值法以及奇函數(shù)的定義,證明即可.
(2)利用函數(shù)的單調(diào)性以及奇偶性,轉(zhuǎn)化為不等式,通過(guò)分離常數(shù)法以及基本不等式求解即可.
解答 解:(1)證明:f(x+y)=f(x)+f(y)(x,y∈R),①
令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0.
令y=-x,代入①式,得f(x-x)=f(x)+f(-x),
又f(0)=0,則有0=f(x)+f(-x).
即f(-x)=-f(x)對(duì)任意x∈R成立,
所以f(x)是奇函數(shù).
(2)解:因?yàn)閒(3)>f(0),
又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),
又由(1)f(x)是奇函數(shù).
f(k•3x)<-f(3x-9x-2)=f(-3x+9x+2),
k•3x<-3x+9x+2,
令t=3x>0,分離系數(shù)得:$k<-1+t+\frac{2}{t}$,
問(wèn)題等價(jià)于$k<-1+t+\frac{2}{t}$,對(duì)任意t>0恒成立.
∵$-1+t+\frac{2}{t}≥-1+2\sqrt{2}$,
∴$k<-1+2\sqrt{2}$.
點(diǎn)評(píng) 本題考查抽象函數(shù)以及函數(shù)恒成立的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③⑤ | C. | ②③⑤ | D. | ③④⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π | B. | $\frac{3π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com