函數(shù)y=
|x-4|-4
9-x2
的奇偶性是
 
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先求出函數(shù)的定義域?yàn)椋?3,3),由此化簡(jiǎn)函數(shù)解析式,利用奇偶函數(shù)的定義判斷.
解答: 解:由已知,函數(shù)的定義域?yàn)椋?3,3),所以函數(shù)y=
|x-4|-4
9-x2
=
-x
9-x2
,
f(-x)=
-(-x)
9-(-x)2
=
x
9-x2
=f(x);
故答案為:奇函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的判斷;首先求出函數(shù)的定義域,如果定義域關(guān)于原點(diǎn)對(duì)稱,再利用奇偶函數(shù)的定義判斷奇偶性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a、b∈R).
(1)要使f(x)在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)當(dāng)a>0時(shí),試求f(x)的解析式,使f(x)的極大值為
31
27
,極小值為1;
(3)若x∈[0,1]時(shí),f(x)圖象上任意一點(diǎn)處的切線的傾斜角為θ,試求當(dāng)θ∈[0,
π
4
]時(shí),a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為△ABC所在平面內(nèi)一點(diǎn),且滿足
AP
=
1
5
AC
+
2
5
AB
,則△APB的面積與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2ωx-
π
6
)+
1
2
(ω>0)最小正周期為π
(Ⅰ)求ω的值,
(Ⅱ)當(dāng)x∈[0,
3
]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:三角形的中位線長(zhǎng)度等于底邊長(zhǎng)度的一半.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|-3≤x≤a,a>-3},B={y|y=3x+10,x∈A},C={z|z=5-x,x∈A},且B∩C=C,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x+sinxcosx
(1)求f(
3
)+f(-
3
)
的值;
(1)求f(x)的最大值及取得最大值時(shí)對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(1,0)
,
b
=(
1
2
,
1
2
)
,則下列結(jié)論正確的是( 。
A、|
a
|=|
b
|
B、
a
b
=
2
2
C、(
a
-
b
)•
b
=0
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的參數(shù)方程是
x=2+
2
cosθ
y=
2
sinθ
(θ為參數(shù)),且曲線C與直線x-
3
y=0相交于兩點(diǎn)A、B,則線段AB的長(zhǎng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案