(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知某圓的極坐標(biāo)方程為
(I)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(II)若點(diǎn)在該圓上,求的最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的極坐標(biāo)方程為: .
⑴將極坐標(biāo)方程化為普通方程;
⑵若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知的極坐標(biāo)方程為,分別為在直角坐標(biāo)系中與 軸、軸的交點(diǎn),曲線的參數(shù)方程為(為參數(shù),且),為的中點(diǎn),求:過(為坐標(biāo)原點(diǎn))的直線與曲線所圍成的封閉圖形的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為對數(shù)),求曲線截直線所得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,極點(diǎn)為坐標(biāo)原點(diǎn)O,已知圓C的圓心坐標(biāo)為,半徑
為,直線的極坐標(biāo)方程為.
(1)求圓C的極坐標(biāo)方程;
(2)若圓C和直線相交于A,B兩點(diǎn),求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為(其中為參數(shù))
(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)求圓上的點(diǎn)到直線的距離的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com