某中學(xué)高三文科班學(xué)生參加了數(shù)學(xué)與地理水平測試,學(xué)校從測試合格的學(xué)生中隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計(jì)分析.抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />
成績分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42人.
(1)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率為30%,求a,b的值;
(2)若樣本中,求在地理成績及格的學(xué)生中,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

(1),; (2).  

解析試題分析:(1)由,得,
根據(jù)可得;
(2)由題意知,且,
滿足條件的,
共14組.
且每組出現(xiàn)的可能性相同.
其中數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的有:
共6組.利用古典概型概率的計(jì)算公式即得.
(1)由,得,                     3分

,;                                           6分
(2)由題意知,且,
∴滿足條件的,
共14組.
且每組出現(xiàn)的可能性相同.                                    9分
其中數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的有:
共6組.        11分
∴數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率為.        12分
考點(diǎn):古典概型,頻率分布表.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,按各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.

(1)若第5組抽出的號(hào)碼為22,寫出所有被抽出職工的號(hào)碼;
(2)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•福建)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的條件下,將等級(jí)系數(shù)為4的3件日用品記為x1,x2,x3,等級(jí)系數(shù)為5的2件日用品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2,這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小區(qū)統(tǒng)計(jì)部門隨機(jī)抽查了區(qū)內(nèi)名網(wǎng)友4月1日這天的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表(圖(1)).網(wǎng)購金額超過千元的顧客被定義為“網(wǎng)購紅人”,網(wǎng)購金額不超過千元的顧客被定義為“非網(wǎng)購紅人”.已知“非網(wǎng)購紅人”與“網(wǎng)購紅人”人數(shù)比恰為.
(1)確定的值,并補(bǔ)全頻率分布直方圖(圖(2)).
(2)為進(jìn)一步了解這名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購紅人”和“網(wǎng)購紅人”中用分層抽樣的方法確定人,若需從這人中隨機(jī)選取人進(jìn)行問卷調(diào)查,設(shè)為選取的人中“網(wǎng)購紅人”的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年11月,青島發(fā)生輸油管道爆炸事故造成膠州灣局部污染.國家海洋局用分層抽樣的方法從國家環(huán)保專家、海洋生物專家、油氣專家三類專家?guī)熘谐槿∪舾扇私M成研究小組赴泄油海域工作,有關(guān)數(shù)據(jù)見表1(單位:人)

海洋生物專家為了檢測該地受污染后對(duì)海洋動(dòng)物身體健康的影響,隨機(jī)選取了只海豚進(jìn)行了檢測,并將有關(guān)數(shù)據(jù)整理為不完整的列聯(lián)表,如表2.
(1)求研究小組的總?cè)藬?shù);
(2)寫出表2中、、、、的值,并判斷有多大的把握認(rèn)為海豚身體不健康與受到污染有關(guān);
(3)若從研究小組的環(huán)保專家和海洋生物專家中隨機(jī)選人撰寫研究報(bào)告,求其中恰好有人為環(huán)保專家的概率.
附:①,其中.















 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:

(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生成的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為

從用B配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元),求X的分布列及數(shù)學(xué)期望.(以試驗(yàn)結(jié)果中質(zhì)量指標(biāo)值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標(biāo)值落入相應(yīng)組的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車.”某市交警在該市一交通崗前設(shè)點(diǎn)對(duì)過往的車輛進(jìn)行抽查,經(jīng)過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對(duì)這60 名酒后駕車者血液中酒精濃度進(jìn)行檢測后依所得結(jié)果畫出的頻率分布直方圖.

(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,圖乙的程序框圖是對(duì)這60名酒后駕車者血液的酒精濃度做進(jìn)一步的統(tǒng)計(jì),求出圖乙輸出的S的值,并說明S的統(tǒng)計(jì)意義;(圖乙中數(shù)據(jù)分別表示圖甲中各組的組中值及頻率)

(2)本次行動(dòng)中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于70~90的范圍,但他倆堅(jiān)稱沒喝那么多,是測試儀不準(zhǔn),交警大隊(duì)隊(duì)長決定在被酒精測試儀測得酒精濃度屬于70~90范圍的酒后駕車者中隨機(jī)抽出2人抽血檢驗(yàn),設(shè)為吳、李兩位先生被抽中的人數(shù),求的分布列,并求吳、李兩位先生至少有1人被抽中的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002, ,800進(jìn)行編號(hào);
(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)

(2)抽取的100的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:

人數(shù)
數(shù)學(xué)
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習(xí)冊(cè)答案