某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小三角形構(gòu)成,小三角形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小三角形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小三角形.由圖形知f(1)=1,f(2)=3,f(3)=6
(1)求出f(5);
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.
考點(diǎn):歸納推理,進(jìn)行簡單的合情推理
專題:簡易邏輯
分析:(1)先分別觀察給出圖形中三角形的個數(shù)為:1,1+2,1+2+3,…可得f(5);
(2)由(1)中數(shù)據(jù)總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解.
解答: 解:(1)∵f(1)=1,
f(2)=1+2=3,
f(3)=1+2+3=6
f(4)=1+2+3+4=10
∴f(5)=1+2+3+4+5=15,
(2)由(1)中,
f(2)-f(1)=2,
f(3)-f(2)=3,
f(4)-f(3)=4,
f(5)-f(4)=5,

歸納可得f(n+1)-f(n)=n+1,
∴f(n)=f(n-1)+n=f(n-2)+n+(n-1)=…=n+(n-1)+…+2+1=
n(n+1)
2
點(diǎn)評:本題主要考查歸納推理,其基本思路是先分析具體,觀察,總結(jié)其內(nèi)在聯(lián)系,得到一般性的結(jié)論,若求解的項(xiàng)數(shù)較少,可一直推理出結(jié)果,若項(xiàng)數(shù)較多,則要得到一般求解方法,再求具體問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC與△DBC都是邊長為2的等邊三角形,且平面ABC⊥平面DBC,過點(diǎn)A作PA⊥平面ABC,且AP=2
3

(1)求證:PA∥平面DBC;
(2)求直線PD與平面DBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax-a2lnx(a≠0)有兩個零點(diǎn).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)對于任意兩個不相等的x1,x2∈(0,+∞),存在x0使得f′(x0)=
f(x1)-f(x2)
x1-x2
,求證:
x1x2
<x0
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
2
,且過點(diǎn)A(
3
2
,
1
2
).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知l:y=kx-1,是否存在k使得點(diǎn)A關(guān)于l的對稱點(diǎn)B(不同于點(diǎn)A)在橢圓C上?若存在求出此時直線l的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某部隊駐扎在青藏高原上,那里海拔高、寒冷缺氧、四季風(fēng)沙、沒有新鮮蔬菜,生活條件極為艱苦.但戰(zhàn)士們不計個人得失,扎根風(fēng)雪高原,以鋼鐵般的意志,自力更生,克服惡劣的自然環(huán)境.該部隊現(xiàn)計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),與左、右兩側(cè)及后側(cè)的內(nèi)墻各保留1m寬的通道,與前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二項(xiàng)式(x2+
1
2
x
n(n∈N*)展開式中,前三項(xiàng)的二項(xiàng)式系數(shù)和為56,求展開式中的常數(shù)項(xiàng);
(2)(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R)
①求
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值;
②求a1+2a2+3a3+4a4+…+2014a2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD為平行四邊形,∠A=60°,AF=2FB,AB=6,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,折后如圖滿足平面ABCD⊥平面BCEF.
(Ⅰ)求證:BD⊥EF;
(Ⅱ)求三棱錐D-NBF的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD.
(1)求證:面PAB⊥平面PDC; 
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下是某地搜集到的新房屋的銷售價格y(萬元)和房屋的面積x(m2)的數(shù)據(jù),若由資料可知y對x呈線性相關(guān)關(guān)系.
x 80 90 100 110 120
y 48 52 63 72 80
試求:(1)線性回歸方程;
(2)根據(jù)(1)的結(jié)果估計當(dāng)房屋面積為150m2時的銷售價格.
參考公式:b=
n
i=1
xiyi-n
x
y
n
i=1
x
2
i
-n
x
2
=
n
i=1
(xi-
x
)(yi-
y
)
n
i=1
(xi-
x
)2
=
Sxy
S
2
X

查看答案和解析>>

同步練習(xí)冊答案