若定義在上的函數(shù)滿足條件:存在實數(shù),使得:
⑴ 任取,有是常數(shù));
⑵ 對于內(nèi)任意,當,總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對于(2)中的函數(shù),若上有兩個不相等的根,求實數(shù)的取值范圍。

解:⑴,                          
則存在區(qū)間使
且當時,恒成立。                  
所以函數(shù)是 “平頂型”函數(shù),平頂高度為,平頂寬度為
⑵ 存在區(qū)間,使得恒成立
恒成立,則
時,不是“平頂型”函數(shù)。
時,是“平頂型”函數(shù)
時,,則,得
時,,則,得     
所以。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某化工企業(yè)2010年底投入100萬元,購入一套污水處理設備.該設備每年的運轉(zhuǎn)費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.
(Ⅰ)求該企業(yè)使用該設備x年的年平均污水處理費用y(萬元);
(Ⅱ)問為使該企業(yè)的年平均污水處理費用最低,該企業(yè)幾年后需要重新更換新的污水處理設備?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
⑴若,解方程;
⑵若函數(shù)在[1,2]上有零點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分) 對于函數(shù)fx),若存在x0∈R,使fx0)=x0成立, 則稱x0fx)的不動點.  已知函數(shù)fx)=ax2+(b+1)x+b-1(a≠0)
(1)當a=1,b=-2時,求fx)的不動點;
(2)若對于任意實數(shù)b,函數(shù)fx)恒有兩個相異的不動點,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(本小題滿分14分)一塊邊長為10的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,試建立容器的容積的函數(shù)關系式,并求出函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得x∈[10,1000]萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)f(x)模型制定獎勵方案,試用數(shù)學語言表述公司對獎勵函數(shù)f(x)模型
的基本要求;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(i) y=;(ii) y=4lgx-3.試分析這兩個函數(shù)模型
是否符合公司要求?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知滿足不等式,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)設是定義在R上的偶函數(shù),其圖象關于對稱,對任意的,都有,且
(1)求
(2)證明:是周期函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 (本小題滿分10分)記函數(shù)的定義域為4,
 的定義域為B
(I)求集合A
(II)若,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案