(20) 如圖,已知長(zhǎng)方體直線與平面所成的角為,垂直,的中點(diǎn).

(I)求異面直線所成的角;

(II)求平面與平面所成的二面角;

(III)求點(diǎn)到平面的距離.

20.解法一:

在長(zhǎng)方體中,以所在的直線為軸,以所在的直線為軸,所在的直線為軸建立空間直角坐標(biāo)系如圖。

由已知可得。

平面,從而與平面所成的角為,

,

從而易得

(I)∵

      ∴=

即異面直線所成的角為

(II)易知平面的一個(gè)法向量設(shè)是平面的一個(gè)法向量,

即平面與平面所成的二面角的大。ㄤJ角)為

(III)點(diǎn)到平面的距離,即在平面的法向量上的投影的絕對(duì)值,所以距離

=

所以點(diǎn)到平面的距離為

解法二:    (Ⅰ)連結(jié)B1D1,過(guò)F作B1D1的垂線,垂足為K,

         ∵BB1與兩底面ABCD,A1B1C1D1都垂直,

         ∴

          又

因此  FK∥AE.

∴∠BFK 為異面直線BF與AE所成的角。

連結(jié)BK,由FK⊥面BDDB得FK⊥BK。

從而   △BKF為Rt△

FK===

又        BF=

∴cos∠BFK=。

∴異面直線BF與AE所成的角為arcos。

(Ⅱ)由于DA⊥面AA1B,由A作BF的垂線AG,垂足為G,連結(jié)DG,由三垂線定理知BG⊥DG。

 ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角

   且∠DAG=90°,在平面AA1B中,延長(zhǎng)BF與AA1交于點(diǎn)S。

∵F為A1B1的中點(diǎn),A1FAB。

∴A1、F分別為SA、SB的中點(diǎn)。

即SA=2A1A=2=AB。

∴Rt△BAS為等腰直角三角形,垂足G點(diǎn)實(shí)為斜邊SB的中點(diǎn)F,即F、G重合,

易得AG=AF=SB=,在Rt△BAS中,AD=

∴tan∠AGD=

∴∠AGD=arctan

即平面BDF與平面AA1B所成二面角(銳角)的大小為arctan

(Ⅲ)由(Ⅱ)知平面AFD是平面BDF與平面AA1B所成二面角的平面角所在的平面,

∴面AFD⊥面BDF。

在Rt△ADF中,由A作AH⊥DF于H,則AH即為點(diǎn)A到平面BDF的距離,

由  AH·DF=AD·AF,得

所以點(diǎn)A到平面BDF的距離為 。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一艘貨輪以20海里/小時(shí)的速度沿著方位角(從指北針?lè)较蝽槙r(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)148°的方向航行.為了確定船位,在B點(diǎn)觀察燈塔A的方位角是118°,航行半小時(shí)后到達(dá)C點(diǎn),觀察燈塔A的方位角是88°,則貨輪與燈塔A的最近距離是
8.7海里
8.7海里
(精確到0.1海里,其中
2
=1.414,
3
=1.732
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(20)

如圖,已知長(zhǎng)方體直線與平面

所成的角為,垂直,的中點(diǎn).

(I)求異面直線所成的角;

(II)求平面與平面所成的二面角(銳角)的大小;

(III)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案