精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,若雙曲線的焦距為8,則  
3

試題分析:通過雙曲線的方程,判斷實軸所在軸,求出c,利用焦距求出m的值即可. 解:因為在平面直角坐標系Oxy中,雙曲線的焦距為8,所以m>0,焦點在x軸,所以a2=m,b2=m2+4,所以c2=m2+m+4,又雙曲線的焦距為8,所以:m2+m+4=16,即m2+m-12=0,解得m=3或m=-4(舍).故答案為:3.
點評:本題考查雙曲線的簡單性質的應用,判斷雙曲線的焦點所在的軸是解題的關鍵,法則容易出錯.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的一個焦點與拋物線的焦點重合,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點,橢圓左右焦點分別為,上頂點為為等邊三角形.定義橢圓C上的點的“伴隨點”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CA、B兩點,若點AB的“伴隨點”分別是P、Q,且以PQ為直徑的圓經過坐標原點O.橢圓C的右頂點為D,試探究ΔOAB的面積與ΔODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的左右焦點分別是,設是雙曲線右支上一點,上投影的大小恰好為,且它們的夾角為,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的右焦點為,右準線為,離心率為,點在橢圓上,以為圓心,為半徑的圓與的兩個公共點是

(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點在同一條直線上,且原點到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率等于,點在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設橢圓的左右頂點分別為,,過點的動直線與橢圓相交于,兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左右焦點分別為、,由4個點、組成一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

同步練習冊答案