已知f(x)=log2(1+x4)-(x∈R)是偶函數(shù)。
(1)求實常數(shù)m的值,并給出函數(shù)f(x)的單調區(qū)間(不要求證明);
(2)k為實常數(shù),解關于x的不等式:f(x+k)>f(|3x+1|)。
解:(1)∵f(x)是偶函數(shù),
∴f(-x)=f(x),

∴mx=0
∴m=0

f(x)的遞增區(qū)間為[0,+∞),遞減區(qū)間為(-∞,0]。
(2)∵f(x)是偶函數(shù),
∴f(x+k)=f(|x+k|),
不等式即f(|x+k|)>f(|3x+1|),由于f(x)在[0,+∞)上是增函數(shù),
∴|x+k|>|3x+1|,
∴x2+2kx+k2>9x2+6x+1,
即8x2+(6-2k)x+(1-k2)<0


時,不等式解集為
時,不等式解集為
時,不等式解集為。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
log
(4x+1)
4
+kx是偶函數(shù),其中x∈R,且k為常數(shù).
(1)求k的值;
(2)記g(x)=4f(x)求x∈[0,2]時,函數(shù)個g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為R上的奇函數(shù),當x>0時,f(x)=3x,那么f(log
 
4
1
2
)的值為
-9
-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義域為R上的奇函數(shù),且當x>0時有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=log 
1
4
x,那么f(-
1
2
)的值是( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=
log(4x+1)4
+kx是偶函數(shù),其中x∈R,且k為常數(shù).
(1)求k的值;
(2)記g(x)=4f(x)求x∈[0,2]時,函數(shù)個g(x)的最大值.

查看答案和解析>>

同步練習冊答案