【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.

【答案】
(1)

解:由已知2a=2 ,解得a= ,記點(diǎn)P(x0,y0),

∵kOM= ,∴kOM = = = ,

又點(diǎn)P(x0,y0)在橢圓上,故 =1,∴kOM =﹣ =﹣ ,

,∴b2=1,∴橢圓的方程為


(2)

解:設(shè)直線l:y=k(x+1),聯(lián)立直線與橢圓方程 ,

得(2k2+1)x2+4k2x+2k2﹣2=0,記A(x1,y1),B(x2,y2).

由韋達(dá)定理可得 ,

可得 ,

故AB中點(diǎn) ,

QN直線方程: ,

,已知條件得: ,∴0<2k2<1,

,∴


【解析】(1)由已知2a=2 ,解得a= ,記點(diǎn)P(x0 , y0),kOM= ,可得kOM = 利用斜率計(jì)算公式及其點(diǎn)P(x0 , y0)在橢圓上,即可得出.(2)設(shè)直線l:y=k(x+1),聯(lián)立直線與橢圓方程得(2k2+1)x2+4k2x+2k2﹣2=0,記A(x1 , y1),B(x2 , y2).利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、弦長(zhǎng)公式即可得出.
【考點(diǎn)精析】掌握橢圓的標(biāo)準(zhǔn)方程是解答本題的根本,需要知道橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知 ,,且函數(shù)的圖像上的任意兩條對(duì)稱軸之間的距離的最小值是.

1)求的值:

(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角A,B,C的對(duì)邊分別是且滿足

(1)求角B的大;

(2)若的面積為為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(文科學(xué)生做)已知數(shù)列滿足.

(1)求,的值,猜想并證明的單調(diào)性;

(2)請(qǐng)用反證法證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線照射下落在居民樓上的影長(zhǎng)不超過(guò)米,其中該太陽(yáng)光線與水平線的夾角滿足.

1)若設(shè)計(jì)米,米,問(wèn)能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計(jì)的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果運(yùn)行結(jié)果為720,那么判斷框中應(yīng)填入(
A.k<6?
B.k<7?
C.k>6?
D.k>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1當(dāng)時(shí),的極值

2當(dāng)時(shí),證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.

(1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:

對(duì)教師管理水平好評(píng)

對(duì)教師管理水平不滿意

合計(jì)

對(duì)教師教學(xué)水平好評(píng)

對(duì)教師教學(xué)水平不滿意

合計(jì)

請(qǐng)問(wèn)是否可以在犯錯(cuò)誤概率不超過(guò)0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?

(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.

①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學(xué)期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案