分析 (1)根據(jù)DE把草坪分成面積相等的兩部分,利用任意三角形的面積公式建立關(guān)系即可.
(2)利用余弦定理建立關(guān)系即可.
解答 解:(1)由題意:DE把草坪分成面積相等的兩部分,AD=x,
∴${S_{△ADE}}=\frac{1}{2}{S_{△ABC}}$,即$\frac{1}{2}x•AE•sin{60°}=\frac{{\sqrt{3}}}{2}$,∴$AE=\frac{2}{x}$(x>0),…①
(2)AD=x(x>0),ED=y,在△ADE中,y2=x2+AE2-2x•AE•cos60°,即y2=x2+AE2-x•AE,②
①代入②得:${y^2}={x^2}+{(\frac{2}{x})^2}-2$(y>0),∴$y=\sqrt{{x^2}+{{(\frac{2}{x})}^2}-2}$(1≤x≤2).
(3)如果DE是水管,$y=\sqrt{{x^2}+{{(\frac{2}{x})}^2}-2}≥\sqrt{2×2-2}=\sqrt{2}$,
當(dāng)且僅當(dāng)${x^2}=\frac{4}{x^2}$,即$x=\sqrt{2}$時(shí)“=”成立,故${y_{min}}=\sqrt{2}$,
即DE∥BC,且$AD=DE=\sqrt{2}$時(shí),DE最短;
如果DE是參觀線(xiàn)路,記$f(x)={x^2}+\frac{4}{x^2}$,
根據(jù)勾勾函數(shù)的圖象及性質(zhì),可知函數(shù)在$[1,\sqrt{2}]$上遞減,在$[\sqrt{2},2]$上遞增,
故f(x)max=f(1)=f(2)=5,
∴${y_{max}}=\sqrt{5-2}=\sqrt{3}$,
即DE為AB中線(xiàn)或AC中線(xiàn)時(shí),DE最長(zhǎng).
點(diǎn)評(píng) 本題考查余弦定理和基本不等式的性質(zhì)以及函數(shù)的思想在實(shí)際問(wèn)題中的運(yùn)用和關(guān)系的建立.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com