如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
(I).(II).
【解析】
試題分析:(I)以O(shè)為原點(diǎn),OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.
則有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).
所以,cos<>.
由于異面直線BE與AC所成的角是銳角,
所以,異面直線BE與AC所成角的余弦值是.
(II),,
設(shè)平面ABE的法向量為,
則由,,得,
取,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060309223654793954/SYS201306030923393784451593_DA.files/image013.png">
所以平面BEC的一個(gè)法向量為n2=(0,0,1),
所以.
由于二面角A-BE-C的平面角是n1與n2的夾角的補(bǔ)角,
所以,二面角A-BE-C的余弦值是.
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,應(yīng)用空間向量,使問題解答得以簡化。本解答利用了“向量法”,簡化了證明過程,實(shí)現(xiàn)了“以算代證”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
OA |
a |
OB |
b |
OC |
c |
AG |
A、
| ||||||||||
B、-
| ||||||||||
C、
| ||||||||||
D、-
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com