(本小題滿分14分)
如圖1所示,在邊長為12的正方形中,點(diǎn)在線段上,且,,作,分別交,于點(diǎn),,作,分別交,于點(diǎn),,將該正方形沿,折疊,使得與重合,構(gòu)成如圖2所示的三棱柱.
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求平面與平面所成銳二面角的余弦值.
http://www.zxxk.com/gaokao/beijing/
(Ⅰ)見解析(Ⅱ)(Ⅲ)
(Ⅰ)證明:在正方形中,因?yàn)?img width=162 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/58/289458.gif" >,
所以三棱柱的底面三角形的邊.
因?yàn)?img width=50 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/62/289462.gif" >,,
所以,所以.…………………………………2分
因?yàn)樗倪呅?img width=54 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/57/289457.gif" >為正方形,,
所以,而,
所以平面. …………………………………………………………5分
(Ⅱ)解:因?yàn)?img width=40 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/70/289470.gif" >平面,
所以為四棱錐的高.
因?yàn)樗倪呅?img width=48 height=22 src="http://thumb.zyjl.cn/pic1/1899/sx/77/289477.gif" >為直角梯形,且,,
所以梯形的面積為.
所以四棱錐的體積. ……………………9分
(Ⅲ)解:由(Ⅰ)、(Ⅱ)可知,,,兩兩互相垂直.以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則,,,,,
所以,,
設(shè)平面的一個法向量為.
則 即
令,則.
所以.………………………………………………………………12分
顯然平面的一個法向量為.
設(shè)平面與平面所成銳二面角為.
則.
所以平面與平面所成銳二面角的余弦值為.……………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com