已知函數(shù)。

(1)若的單調(diào)增區(qū)間是(0,1)求m的值。

(2)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍。

 

【答案】

(1);(2)由。

【解析】

試題分析:(1)先求出導(dǎo)函數(shù)f'(x),根據(jù)函數(shù)f(x)在區(qū)間(0, )上單調(diào)遞增,在區(qū)間( ,1)上單調(diào)遞減,可知x=是函數(shù)的極值,從而f'()=0,解之即可求出m的值;

(2)本小問可轉(zhuǎn)化成f'(x)=3mx2-6(m+1)x+3m+6>3m在區(qū)間[-1,1]恒成立,即3mx2-6(m+1)x+6>0在區(qū)間[-1,1]恒成立,將x=-1和x=1代入使之成立,即可求出m的范圍

(1)

的解集為(0,1),

則0,1是關(guān)于x的方程的兩根

(2)由已知,當(dāng)

又m<0,要使上恒成立

只需滿足

考點:本題主要考查了函數(shù)恒成立問題,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識,考查計算能力和分析問題的能力,屬于基礎(chǔ)題.

點評:解決該試題的關(guān)鍵是利用導(dǎo)數(shù)得到函數(shù)的單調(diào)去甲,以及函數(shù)的極值,進(jìn)而得到從那數(shù)m的值,同時對于恒成立問題的轉(zhuǎn)化思想的運用,求解最值得到參數(shù)的范圍。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)

(1)若的極值點,求實數(shù)的值;

(2)若上為增函數(shù),求實數(shù)的取值范圍;

(3)當(dāng)時,方程有實根,求實數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;

(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.

 

查看答案和解析>>

同步練習(xí)冊答案