(本題滿分12分)已知函數(shù),,其中,設(shè)

(1)判斷的奇偶性,并說明理由;

(2)若,求使成立的x的集合。

 

【答案】

(1)奇函數(shù);(2){x|0<x<1}。

【解析】

試題分析:(1)奇函數(shù)---------------------------1

h(x)=loga(1+x)-loga(1-x)=loga

 

∴-1<x<1

∴定義域(-1,1)------------------3

X(-1,1)

h (-x) =loga= —— loga= - h (x)

所以h (x)為奇函數(shù)----------------------6

(2) ∵f(3)=2

∴a=2---------------------------------7

h(x) >0

∴h(x)=log2(1+x)-log2(1-x)=log2>0

解之得0<x<1--------------------11

所以,解集為{x|0<x<1}------------------12

考點(diǎn):本題主要考查對(duì)數(shù)函數(shù)的性質(zhì),函數(shù)的奇偶性,簡(jiǎn)單不等式組的解法。

點(diǎn)評(píng):典型題,將對(duì)數(shù)函數(shù)的性質(zhì),函數(shù)的奇偶性,簡(jiǎn)單不等式組的解法綜合在一起進(jìn)行考查,對(duì)考查學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)的能力有較好的作用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、所對(duì)的邊分別為、、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).

(1)若,且,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案