如圖,在半徑為1,圓心角為的扇形的弧上任取一點,作,交于點,求的最大面積.

 

 

【答案】

【解析】解決本小題的關(guān)鍵是作于點于點,設(shè),則,然后把的面積表示成關(guān)于的函數(shù).然后再利用三角函數(shù)求最值的方法求解.

于點于點,設(shè),則

中,,

中,

 

 ,.

,所以 

∴當,即時,有最大值且為

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù).
(2)現(xiàn)用EP和FQ作為母線并焊接起來,將長方形EFPQ制成圓柱的側(cè)面,能否從△OEF中直接剪出一個圓面作為圓柱形容器的底面?如果不能請說明理由.如果可能,求出側(cè)面積最大時容器的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在半徑為R、圓心角為
π3
的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當矩形EPQF的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高二上學期中考試數(shù)學試卷(解析版) 題型:解答題

(本小題滿分15分)

如圖,在半徑為圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓上,點、在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.

(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;

(2)當為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省高三階段檢測理科數(shù)學試卷(解析版) 題型:解答題

如圖,在半徑為、圓心角為的扇形金屬材料中剪出一個長方形,并且的平分線平行,設(shè)

(1)試寫出用表示長方形的面積的函數(shù);

(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當矩形的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省連云港市東海高級中學高三(上)段考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在半徑為R、圓心角為的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當矩形EPQF的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

查看答案和解析>>

同步練習冊答案