正方體的面對角線長是x,其對角線的長為
 
考點:棱柱的結構特征
專題:空間位置關系與距離
分析:根據(jù)正方體的性質得出正方體的棱長為a,則面對角線長是
2
a
,其體對角線的長為
3
a
,求解即可.
解答: 解:設正方體的棱長為a,則面對角線長是
2
a

∵正方體的面對角線長是x,
2
a=x
,a=
x
2
,
∴其體對角線的長為
3
a
=
3
2
x=
6
2
x=
6
2
x,
故答案為:
6
2
x
點評:本題考查了正方體的性質,面對角線,體對角線與棱長的關系,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:x=-2,圓C:x2+y2=4,動圓P恒與l相切,動圓P與圓C相交于A、B兩點,且AB恒為圓C的直徑,動圓P圓心的軌跡構成曲線E.
(1)求曲線E的軌跡方程;
(2)已知Q(-1,0)、F(1,0),過Q的直線m與曲線E交于M,N兩點,設直線FM,F(xiàn)N的傾斜角分別為θ1,θ2,問θ12是否為定值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,AB∥EF,AB=2EF=2,AE=AD=1,∠EAB=90°,平面ABFE⊥平面ABCD
(Ⅰ)若G為DF的中點,求BG的長,
(Ⅱ)若H是DC的中點,求二面角A-HF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x+2y-3=0與圓C:x2+y2+x-6y+m=0相交于A、B兩點,O為坐標原點,D為線段AB的中點
(Ⅰ)分別求出圓心C以及點D的坐標;
(Ⅱ)若OA⊥OB,求|AB|的長以及m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐中,底面是邊長為2的正方形,頂點在底面的射影是底面的中心,側棱長為2,G是PB的中點.
(1)證明:PD∥面AGC;
(2)求AG和平面PBD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F為拋物線y2=2px的焦點,Q(4,2)為定點,P為拋物線上C上的動點,且|PQ+PF|最小值為5,求點P的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為曲柄連桿結構示意圖,當曲柄 OA 在 OB 位置時,連桿端點 P 在 Q 的位置,當 OA 自 OB 按順時針旋轉 α 角時,P 和 Q 之間的距離為 x,已知 OA=25cm,AP=125cm,若 OA⊥AP,則 x 等于
 
(精確到0.1cm)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為2,對角線交于點O,DE⊥平面ABCD;
(Ⅰ)求證:AC⊥BE;
(Ⅱ)若∠ADC=120°,DE=2,BE上一點F滿足OF∥DE,求直線AF與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義域在(-∞,0)∪(0,+∞)上的不恒為零的函數(shù),且對于任意非零實數(shù)a,b滿足f(ab)=f(a)+f(b).
(1)求f(1)與f(-1)的值;
(2)判斷并證明y=f(x)的奇偶性;
(3)若函數(shù)f(x)在(-∞,0)上單調遞減,求不等式f(x-1)≤0的解集.

查看答案和解析>>

同步練習冊答案